

Arno J. Hinrichsen GmbH & Co.KG

Anerkannte Prüfstelle gemäß "RAP Stra" für alle Arten von Baustoffprüfungen an Baustoffen und Baustoffgemischen im Straßenbau.

Eignungsnachweis Nr. 5654/23

vom 27.09.2023/Lo/gie

Auftraggeber:

Machulez Transport GmbH

Neue Industriestraße 5

27472 Cuxhaven

Auftragssache:

Eignungsnachweis nach Ersatzbaustoffverordnung

Boden BM

Probenbezeichnung:

Boden

Probenmenge:

ca. 20 kg

Probenahme:

am 02.05.2023 durch Herrn Schröder, asphalt-labor, im Beisein von Herrn Hoffmann, Fa. Machulez

Entnahmestelle:

Halde

Herkunft:

Wanhöden

Aufbereitungsanlage:

Nordholz

Anforderungen:

ErsatzbaustoffV vom 09.07.2021

Der Eignungsnachweis umfasst 4 Seiten und 2 Anlagen.

Seite 2 zum Eignungsnachweis Nr. 5654/23 vom 27.09.2023

Anerkannte Prüfstelle gemäß "RAP Stra" für alle Arten von Baustoffprüfungen an Baustoffen und Baustoffgemischen im Straßenbau.

1. Veranlassung und Zweck

Ab dem 01.08.2023 gilt die am 16.07.2021 veröffentlichte Verordnung über die Anforderungen an den Einbau von mineralischen Ersatzbaustoffen in technische Bauwerke (Ersatzbaustoffverordnung ErsatzbaustoffV).

Danach sind alle in dieser Verordnung geregelten mineralischen Ersatzbaustoffe im Rahmen eines Eignungsnachweises einer Einbauklasse zuzuordnen und einer Fremdüberwachung zu unterziehen.

Die Machulez Transport GmbH, Cuxhaven, Werk Nordholz, beauftragte daher die asphalt-labor GmbH & Co. KG, Wahlstedt, an dem mineralischen Ersatzbaustoff

- Boden -

einen Eignungsnachweis durchzuführen und dieses Material in die Fremdüberwachung aufzunehmen.

2. Probenahme

Die Probenahme erfolgte am 02.05.2023, das Probenahmeprotokoll ist in der Anlage 1 enthalten.

3. Prüfungen und Prüfergebnisse

Die Proben wurden der Untersuchungsstelle

UCL Umwelt Control Labor GmbH Köpenicker Straße 59 24111 Kiel

für die Durchführung der chemischen Analysen überstellt.

Die vollständigen Prüfergebnisse sind in der Anlage 2 enthalten. In den nachfolgenden Tabellen werden die relevanten Prüfergebnisse zusammengestellt und den Anforderungswerten gegenübergestellt.

Prüfstellenleitung: Dipl.-Ing. Steiniger

Dipl.-Ing. Lüthje

Seite 3 zum Eignungsnachweis Nr. 5654/23 vom 27.09.2023

asphalt-labor

Arno J. Hinrichsen GmbH & Co.KG

Anerkannte Prüfstelle gemäß "RAP Stra" für alle Arten von Baustoffprüfungen an Baustoffen und Baustoffgemischen im Straßenbau.

Materialwerte nach ErsatzbaustoffV, Anlage 1, Tabelle 3, BM-0 (Sand)						
			<i>p</i>	nforderung		
Parameter	Dim.	Prüfergebnis	Sand	Lehm/ Schluff	Ton	Einstufung
Sulfat	mg/l	65,8	250	250	250	BM-0
Arsen	mg/kg	3,7	10	20	20	BM-0
Blei	mg/kg	16,3	40	70	100	BM-0
Cadmium	mg/kg	0,12	0,4	1	1,5	BM-0
Chrom	mg/kg	11,2	30	60	100	BM-0
Kupfer	mg/kg	33,1	20	40	60	BM-0
Nickel	mg/kg	7,5	15	50	70	BM-0
Quecksilber	mg/kg	< 0,05	0,2	0,3	0,3	BM-0
Thallium	mg/kg	< 0,1	0,5	1,0	1,0	BM-0
Zink	mg/kg	57,0	60	150	200	BM-0
TOC	M%	0,940	1	1	1	BM-0
PAK ₁₆	mg/kg	1,13	3	3	3	BM-0
Benzo(a)pyren	mg/kg	0,09	0,3	0,3	0,3	BM-0
PCB ₆ und PCB-118	mg/kg	0,000	0,05	0,05	0,05	BM-0
EOX	mg/kg	< 0,3	1	1	1	BM-0

4. Betriebsbeurteilung und WPK

(Auszug aus Prüfbericht Nr. 5654/1/23 vom 29.06.2023)

Prüfgegenstand	Beurteilung
Betriebsorganisation	geeignet
Anlagenkomponenten	geeignet
Personelle Ausstattung	geeignet
WPK-Handbuch	ordnungsgemäß
WPK-Beauftragter	Herr Machulez-Hellberg
WPK-Durchführung	entfällt

Seite 4 zum Eignungsnachweis Nr. 5654/23 vom 27.09.2023

Anerkannte Prüfstelle gemäß "RAP Stra" für alle Arten von Baustoffprüfungen an Baustoffen und Baustoffgemischen im Straßenbau.

5. Beurteilung

Die geprüfte Probe des mineralischen Ersatzbaustoffes

Boden

entspricht hinsichtlich der geprüften Parameter den Anforderungen der ErsatzbaustoffV und kann der Einbauklasse

BIM-0

zugeordnet werden.

Der Eignungsnachweis gilt damit als bestanden.

asphalt-labor

Arno J. Hinrichsen GmbH & Co. KG

Dipl.-Ing. Steiniger Prüfstellenleitung

Dipl.-Ing. Lobach Sachbearbeiter

5654

asphalt-labor

Arno J. Hinrichsen GmbH & Co. KG Anerkannte Prüfstelle gemäß "RAP Stra" für alle Arten von Baustoffprüfungen an Baustoffen und Baustoffgemischen im Straßenbau

Qualitätsmanagement-Formblatt

Probenahmeprotokoll ErsatzbaustoffV in Verbindung mit PN 98 Kapitel:

QMF 7.3-5

Ausgabe: 01

Datum:

Seite:

04.10.2022 1 von 1

1. Allgemeine Angaben									
Firma/Auftraggeb	er	Mat	me	67	h Cm	post	(me	22	
Aufbereitungsanl	age:	Nove	1 ho	162					
Ersatzbaustoff:		Bock	len						
Charakterisierend	de Prüfkörnung				O Ja	/ O Nein			
Überwachungsze	itraum:	Fign	un	n	asso	ulin			
2. Angaben zum	Ersatzbaustof	f		0					
Hergestellte Lieferkörnungen	The second secon	e Masse im ingszeitraum		il der N Mischpro	/lasse % be zu 4.)	Vorratsm	enge	Art de Lagerur	
1. Boden						2500	3	Helle	le
2.									
3.									
4.									
5.									
6.									
Summe									
3. Angaben zur I	Probenahme		1						
Anzahl der Einzel	proben:	zu 1) 3	6		zu 2)		zu 3)		
		zu 4)			zu 5)		zu 6)		
Probeteilung:		Ø Riffel	Iteiler	0			e)		
Probenahmegerä	t:	@ Scha	ufel	0					
Probenahmegefä	ß:	Ø PE- E							
Witterung/ Äußere	e Einflüsse	has En	1	06					
4. Charakterisier	ende Prüfkörn	ung 0/22 mm							
Massenante	ile der Lieferkör	nungen am G	emisc	h für 0	/22 = 40	x Anteil de	r Mas	se /100 [kg]	
zu 1) z	zu 2)	zu 3)	z	u 4)		zu 5)		zu 6)	
Anteil < 22,4 mm	[M%]				Α	nteil < 4 mr	n [M	%]	
5. Rückstellprob	en								
zu 1) 10 kg z	zu 2) kg	zu 3) - I	kg z	u 4)	kg	zu 5)	kg	zu 6)	kg
0/22 mm k	g	Lagero	ort: W	2002					
see other or	40512023	99	20cl	25			1	LIFE	2
Ort, Datum		Pro	benel	nmer			А	uftraggeber	
						4	4-16	Marin	

Anlage 2/Blatt 1 zum Eignungsnachweis Nr. 5654/23 vom 27.09.2023

UCL Umwelt Control Labor GmbH // Köpenicker Str. 59 // 24111 Kiel // DE

Machulez Transport GmbH Neue Industriestraße 5 27472 Cuxhaven

Ansprechpartner:

Herr Sebastian Münn

Telefon: Telefax: E-Mail: 0431 6964136 0431-698787

sebastian.muenn@ucl-labor.de

Prüfbericht Nr.: 23-23281/1

Prüfgegenstand

Boden

Auftraggeber

Machulez Transport GmbH, Neue Industriestraße 5, DE-27472 Cuxhaven / 67855

Auftrags-Nr. / Datum

- / 09.05.2023

Projektbezeichnung

Lieferwerk Nordholz
- / Auftraggeber

Probenahme am / durch Probeneingang am / durch

09.05.2023 / Auftraggeber

Prüfzeitraum

schriftlichen Genehmigung.

: 09.05.2023 bis 13.06.2023

Untersuchung gemäß Verordnung zur Einführung einer Ersatzbaustoffverordnung, zur Neufassung der Bundes-Bodenschutz- und Altlastenverordnung und zur Änderung der Deponieverordnung und der Gewerbeabfallverordnung vom 09.07.2021, Artikel 1, Anlage 1, Tabelle 3, Materialwerte für Bodenmaterial und Baggergut

Probenbezeichnung		5654		Materialwerte		Methode
	Probe-Nr, Einheit	23-23281-001	BM-0 BG-0 Lehm,Schluff	BM-0* BG-0*	BM-F0* BG-F0*	
Analyse der Originalprobe						
Trockenrückstand 105°C	% OS	90,0			-	DIN EN 15934 Verfahren A:2012-11:L
Mineralische Fremdbestandteile	Vol%	< 10 %	< 10 %	< 10 %	< 50 %	DIN 19747:2009-07;L
Analyse bez. auf den Trocker	nrück s tand	d 105°C (Fraktion	< 2 mm)			
Arsen	mg/kg TS	3,7	20	20	40	DIN EN 16171:2017-01;I
Blei	mg/kg TS	16,3	70	140	140	DIN EN 16171:2017-01;I
Cadmium	mg/kg TS	0,12	1	1	2	DIN EN 16171:2017-01;I
Chrom, gesamt	mg/kg TS	11,2	60	120	120	DIN EN 16171:2017-01;I
Kupfer	mg/kg TS	33,1	40	80	80	DIN EN 16171:2017-01;I
Nickel	mg/kg TS	7,5	50	100	100	DIN EN 16171:2017-01;I
Quecksilber	mg/kg TS	< 0,05	0,3	0,6	0,6	DIN EN ISO 12846:2012-08;L
Thallium	mg/kg TS	< 0,1	1,0	1,0	2	DIN EN 16171:2017-01;I
Zink	mg/kg TS	57,0	150	300	300	DIN EN 16171:2017-01;I
TOC	% TS	0,940	1	1	5	DIN EN 15936 Verf. A:2012-11;L
Kohlenwasserstoffindex	mg/kg TS	< 100	-	600	600	DIN En 14039:2005-01 i.V. LAGA KW- 04:2019-09;L
KW-Index, mobil	mg/kg TS	< 100	H	300	300	DIN En 14039:2005-01 i.V. LAGA KW- 04:2019-09;L
Benzo[a]pyren	mg/kg TS	0,09	0,3	-	-	DIN ISO 18287:2006-05;L
Summe 16 PAK (EBV)	mg/kg TS	1,13	3	6	6	berechnet;L
Summe 7 PCB (EBV)	mg/kg TS	0,000	0,05	0,1	-	berechnet;L
EOX	mg/kg TS	< 0,3	1	1		DIN 38414-17:2017-01;L

UCL Umwelt Control Labor GmbH // Josef-Rethmann-Str. 5 // 44536 Lünen // Deutschland // T +49 2306 2409-0 // F +49 2306 2409-10 // info@ucl-labor.de // antsgericht Dortmund, HRB 17247 // Geschäftsführer: Dana Goldhammer, Silvio Löderbusch, Dr. Jörg Seigner

Anlage 2/Blatt 2 zum Eignungsnachweis Nr. 5654/23 vom 27.09.2023

Seite 2 von 2 zum Prüfbericht Nr.: 23-23281

20230404-24777707

Probenbezeichnung		5654		Materialwerte		Methode	
	Probe-Nr. Einheit	23-23281-001	BM-0 BG-0 Lehm,Schluff	BM-0* BG-0*	BM-F0* BG-F0*		
Analyse aus dem Perkolat							
pH-Wert C1 / C2 / C3	-	7,8 / 8,0 / 8,1		-	6,5-9,5	DIN EN ISO 10523:2012-04;L	
Leitfähigkeit bei 25°C C1 / C2 / C3	μS/cm	926 / 232 / 103		350	350	DIN EN 27888:1993-11;L	
Analyse aus dem Perkolat, k	Analyse aus dem Perkolat, kumulativ berechnet für W/F 2:1 aus C1 bi <mark>s C3</mark>						
Sulfat (o)	mg/l	65,8	250	250	250	berechnet;L	
Arsen (o)	μg/l	2,0	-	8(13)	12	berechnet;L	
Blei (o)	μg/l	5,0	-	23(43)	35	berechnet;L	
Cadmium (o)	µg/l	0,55		2(4)	3,0	berechnet;L	
Chrom, gesamt (o)	μg/l	3,0	-	10(19)	15	berechnet;L	
Kupfer (o)	μg/l	19,2	-	20(41)	30	berechnet;L	
Nickel (o)	µg/l	5,0	·	20(31)	30	berechnet;L	
Quecksilber (o)	μg/l	0,03	-	0,1	-	berechnet;L	
Thallium (o)	μg/l	0,06	-	0,2(0,3)	-	berechnet;L	
Zink (o)	µg/l	21,2	4	100(210)	150	berechnet;L	
PAK 15 (EBV) (o)	µg/l	0,118		0,2	0,3	berechnet;L	
Summe Naphthalin + Methylnaphthaline ges. (EBV) (o)	µg/l	0,008	-	2	-	berechnet;L	
Summe 7 PCB (EBV) korrigiert	µg/l	0,007	-	0,01	-	berechnet;L	
Hinweise zur Probenvorberei	Hinweise zur Probenvorbereitung						
Ausführliches Säuleneluat	-	+				DIN 19528:2009-01;L	
Säureaufschluss	-	+				DIN EN 13657:2003-01;L	

n.b. = nicht bestimmbar n.a. = nicht analysiert n.n. = nicht nachgewiesen ° = nicht akkreditiert FV = Fremdvergabe UA = Unterauftragsvergabe + = durchgeführt Standortkennung (Der Norm nachgestellte Buchstabenkombination): H=Hannover, Kl=Kiel, L=Lünen, HE= Heide, BS=Braunschweig

Dieser Prüfbericht enthält lediglich einen Auszug aus dem gesamten Analys<mark>enu</mark>mfang.

Summe 7 PCB (EBV) korrigiert

Die Frachtberechnung für die "Summe 7 PCB (EBV) C1-3 kum. W/F=2:1, o" erfolgte gemäß Anhang F, DIN 19528:2009-01. Einzelbefunde unterhalb der Bestimmungsgrenze wurden für die Berechnung der Obergrenze (o) mit einer Konzentration Ci = 0,003 μg/l (Bestimmungsgrenze) substituiert. Bei der korrigierten Frachtberechnung in Anlehnung an Anhang F, DIN 19528:2009-01 wurden die Einzelbefunde von n.n. mit der Konzentration von Ci = 0,001 μg/l (Nachweisgrenze) ersetzt.

Anlage 2/Blatt 3 zum Eignungsnachweis Nr. 5654/23 vom 27.09.2023

UCL Umwelt Control Labor GmbH // Köpenicker Str. 59 // 24111 Kiel // DE

Machulez Transport GmbH Neue Industriestraße 5 27472 Cuxhaven

Dipl.-Geol. Sebastian Münn T 0431 6964136 F 0431-698787 sebastian.muenn@ucl-labor.de

Prüfbericht - Nr.:

23-23281-001/1

Prüfgegenstand:

Auftraggeber / KD-Nr.:

Projektbezeichnung:

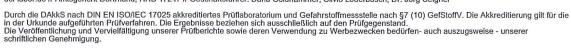
Machulez Transport GmbH, Neue Industriestraße 5, 27472 Cuxhaven / 67855

Lieferwerk: Nordholz

Probenahme am / durch:

- / Auftraggeber

Probeneingang am / durch:


09.05.2023 / Auftraggeber 09.05.2023 - 13.06.2023

Prüfzeitraum:

Untersuchungen gem. Länderarbeitsgemeinschaft Abfall (LAGA): Anforderungen an die stoffliche Verwertung von mineralischen Abfällen, Teil II: Techn. Regeln für die Verwertung, 1.2 Bodenmaterial (TR Boden), Ausgabestand: 05.11.2004

Probei Parameter	nbezeichnung Probe-Nr. Einheit	5654 23-23281-001	Methode
Siebanalyse			
Fraktion <2 mm	% OS	68,7	DIN EN ISO 17982-4: 1996-12;L
Fraktion >2 mm	% OS	31,3	DIN EN ISO 17982-4: 1996-12;L
Analyse der Originalprobe			
mineralische Fremdbestandteile	%	4,3	DIN 19747: 2009-07;L
Störstoffe	%	1,4	DIN 19747: 2009-07;L
spezifische Bodenart		nic <mark>ht sp</mark> ezifisch*	DIN 19682-2: 2014-07;L
Trockenrückstand 105°C	% OS	90,0	DIN EN 15934 Verfahren A: 2012-11;L
Analyse der Fraktion > 2mm			
Trockenrückstand 105°C	% OS	93,6	DIN EN 15934 Verfahren A: 2012-11;L
Analyse der Fraktion < 2mm			
Trockenrückstand 105°C	% OS	89,7	DIN EN 15934 Verfahren A: 2012-11;L
Analyse bez. auf den Trocker	nrückstand 105°C		
Arsen	mg/kg TS	3,7	DIN EN 16171: 2017-01;L
Blei	mg/kg TS	16,3	DIN EN 16171: 2017-01;L
Cadmium	mg/kg TS	0,12	DIN EN 16171: 2017-01;L
Chrom gesamt	mg/kg TS	11,2	DIN EN 16171: 2017-01;L
Kupfer	mg/kg TS	33,1	DIN EN 16171: 2017-01;L

UCL Umwelt Control Labor GmbH // Josef-Rethmann-Str. 5 // 44536 Lünen // Deutschland // T +49 2306 2409-0 // F +49 2306 2409-10 // info@ucl-labor.de ucl-labor.de // Amtsgericht Dortmund, HRB 17247 // Geschäftsführer: Dana Goldhammer, Silvio Löderbusch, Dr. Jörg Seigner

Anlage 2/Blatt 4 zum Eignungsnachweis Nr. 5654/23 vom 27.09.2023

Seite 2 von 18 zum Prüfbericht Nr. 23-23281-001/1

	enbezeichnung	5654	No.
Parameter	Probe-Nr.	23-23281-001	Methode
Zink	Einheit mg/kg TS	57,0	DIN EN 16171:
Nickel	mg/kg TS	7,5	2017-01;L DIN EN 16171:
			2017-01;L DIN EN ISO 12846:
Quecksilber	mg/kg TS	< 0,05	2012-08;L
Thallium	mg/kg TS	< 0,1	DIN EN 16171: 2017-01;L
EOX	mg/kg TS	< 0,3	DIN 38414-17: 2017-01;L
Kohlenwasserstoffindex	mg/kg TS	< 100	DIN EN 14039 2005-01 i.V. LAGA KW-04 2019-09;L
KW-Index, mobil	mg/kg TS	< 100	DIN EN 14039 2005-01 i.V. LAGA KW-04 2019-09;L
Kohlenstoff org. (TOC), wf	% TS	0,940	DIN EN 15936 Verf. A: 2012-11;L
PAK			Y
Naphthalin	mg/kg TS	n.n.	DIN ISO 18287; 2006-05;L
Acenaphthylen	mg/kg TS	< 0,05	DIN ISO 18287: 2006-05;L
Acenaphthen	mg/kg TS	n.n.	DIN ISO 18287: 2006-05;L
Fluoren	mg/kg TS	n.n.	DIN ISO 18287: 2006-05;L
Phenanthren	mg/kg TS	0,09	DIN ISO 18287: 2006-05;L
Anthracen	mg/kg TS	< 0,05	DIN ISO 18287: 2006-05;L
Fluoranthen	mg/kg TS	0,20	DIN ISO 18287: 2006-05;L
Pyren	mg/kg TS	0,16	DIN ISO 18287: 2006-05;L
Benzo[a]anthracen	mg/kg TS	0,09	DIN ISO 18287: 2006-05;L
Chrysen	mg/kg TS	0,07	DIN ISO 18287: 2006-05;L
Benzo[b]fluoranthen	mg/kg TS	0,17	DIN ISO 18287: 2006-05;L
Benzo[k]fluoranthen	mg/kg TS	0,05	DIN ISO 18287: 2006-05;L
Benzo[a]pyren	mg/kg TS	0,09	DIN ISO 18287: 2006-05;L
Dibenz[ah]anthracen	mg/kg TS	n.n.	DIN ISO 18287: 2006-05;L
Benzo[ghi]perylen	mg/kg TS	0,08	DIN ISO 18287: 2006-05;L
Indeno[1,2,3-cd]pyren	mg/kg TS	0,08	DIN ISO 18287: 2006-05;L
Summe 16 PAK (EBV)	mg/kg TS	1,13	berechnet;L
PCB			
PCB-028	mg/kg TS	n.n.	DIN EN 17322: 2021-03:L
PCB-052	mg/kg TS	n.n.	DIN EN 17322: 2021-03;L
PCB-101	mg/kg TS	n.n.	DIN EN 17322: 2021-03;L
PCB-118	mg/kg TS	n.n.	DIN EN 17322: 2021-03;L
PCB-138	mg/kg TS	n.n.	DIN EN 17322: 2021-03;L
PCB-153	mg/kg TS	n.n.	DIN EN 17322:

Anlage 2/Blatt 5 zum Eignungsnachweis Nr. 5654/23 vom 27.09.2023

Seite 3 von 18 zum Prüfbericht Nr. 23-23281-001/1

Parameter	Probenbezeichnung	5654	Methode
T drameter	Probe-Nr. Einheit	23-23281-001	Welldue
PCB-180	mg/kg TS	n.n.	DIN EN 17322: 2021-03:L
Summe 6 PCB (EBV)	mg/kg TS	0,000	berechnet;L
Summe 7 PCB (EBV)	mg/kg TS	0,000	berechnet;L
Analyse aus dem Perk	colat Fraktion Nr. 1 (V	V/F 0,3:1 I/kg)	
pH-Wert		7,8	DIN EN ISO 10523: 2012-04;L
Leitfähigkeit bei 25°C	μS/cm	926	DIN EN 27888: 1993-11;L
Temperatur (pH-Wert)	°C	20	DIN 38404-4: 1976-12;L
Chlorid	mg/l	29,6	DIN EN ISO 10304-1: 2009-07;L
Sulfat	mg/l	328	DIN EN ISO 10304-1: 2009-07;L
Vanadium	μg/l	5,6	DIN EN ISO 17294-2: 2017-01;L
Chrom gesamt	µg/l	< 3	DIN EN ISO 17294-2: 2017-01;L
Nickel	µg/l	< 5	DIN EN ISO 17294-2: 2017-01;L
Kupfer	µg/l	25,7	DIN EN ISO 17294-2: 2017-01;L
Arsen	µg/l	2,0	DIN EN ISO 17294-2: 2017-01;L
Cadmium	µg/l	0,85	DIN EN ISO 17294-2: 2017-01;L
Antimon	µg/l	2,1	DIN EN ISO 17294-2: 2017-01;L
Thallium	µg/l	< 0,06	DIN EN ISO 17294-2: 2017-01;L
Blei	µg/l	5,1	DIN EN ISO 17294-2: 2017-01;L
Zink	µg/l	27,8	DIN EN ISO 17294-2: 2017-01;L
Molybdän	µg/l	17,9	DIN EN ISO 17294-2: 2017-01;L
Quecksilber	µg/I	< 0,033	DIN EN ISO 17294-2: 2017-01;L
Kohlenstoff org. gelöst (DOC) mg/l	16	DIN EN 1484: 2019-04;L
Kohlenwasserstoffindex	µg/l	210	DIN EN ISO 9377-2 (H53): 2001-07;L
KW-Index, mobil	µg/I	110	DIN EN ISO 9377-2 (H53): 2001-07;L
KW-Index C22-C40	µg/l	97	DIN EN ISO 9377-2 (H53): 2001-07;L
PAK			
Naphthalin	µg/l	n.n.	DIN 38407-39: 2011-09;L
1-Methylnaphthalin	µg/l	< 0,004	DIN 38407-39: 2011-09;L
2-Methylnaphthalin	µg/l	< 0,004	DIN 38407-39: 2011-09;L
Acenaphthylen	µg/l	0,014	DIN 38407-39: 2011-09;L
Acenaphthen	hg/l	0,0055	DIN 38407-39: 2011-09;L
Fluoren	µg/I	< 0,004	DIN 38407-39: 2011-09;L

Anlage 2/Blatt 6 zum Eignungsnachweis Nr. 5654/23 vom 27.09.2023

Seite 4 von 18 zum Prüfbericht Nr. 23-23281-001/1

	Probenbezeichnung	5654	
Parameter	Probe-Nr.	23-23281-001	Methode
	Einheit		
Phenanthren	μg/l	0,0086	DIN 38407-39: 2011-09;L
Anthracen	μg/l	0,021	DIN 38407-39: 2011-09;L
Fluoranthen	μg/l	0,057	DIN 38407-39: 2011-09;L
Pyren	μg/l	0,052	DIN 38407-39: 2011-09;L
Benzo[a]anthracen	µg/I	0,028	DIN 38407-39: 2011-09;L
Chrysen	μg/l	0,024	DIN 38407-39: 2011-09;L
Benzo[b]fluoranthen	рд/І	0,054	DIN 38407-39; 2011-09;L
Benzo[k]fluoranthen	µg/l	0,018	DIN 38407-39: 2011-09;L
Benzo[a]pyren	µg/I	0,048	DIN 38407-39: 2011-09;L
Dibenz[ah]anthracen	µg/I	0,0046	DIN 38407-39: 2011-09;L
Benzo[ghi]perylen	µg/l	0,051	DIN 38407-39: 2011-09;L
Indeno[1,2,3-cd]pyren	µg/l	0,041	DIN 38407-39: 2011-09;L
Summe 15 PAK (EBV)	µg/l	0,429	DIN 38407-39: 2011-09;L
Summe Naphthalin +Methylnaphthaline ges.	μg/l	0,004	DIN 38407-39: 2011-09;L
PCB			
PCB-028	µg/l	n.n.	DIN 38407-37: 2013-11;L
PCB-052	µg/l	n.n.	DIN 38407-37: 2013-11;L
PCB-101	µg/l	n.n.	DIN 38407-37: 2013-11;L
PCB-118	µg/l	n.n.	DIN 38407-37: 2013-11;L
PCB-138	µg/I	n.n.	DIN 38407-37: 2013-11;L
PCB-153	µg/I	n.n.	DIN 38407-37: 2013-11;L
PCB-180	µg/l	n.n.	DIN 38407-37: 2013-11;L
Summe 7 PCB (EBV)	µg/l	0,000	berechnet;L
Phenole/Kresole			
Phenol	μg/l	1,4	DIN 38407-27: 2012-10;KI
o-Kresol	µg/l	< 0,15	DIN 38407-27: 2012-10;KI
m-Kresol	µg/l	< 0,15	DIN 38407-27: 2012-10;KI
p-Kresol	µg/l	< 0,15	DIN 38407-27: 2012-10;KI
2,6-Dimethylphenol	μg/l	n.n.	DIN 38407-27: 2012-10;KI
2,5-Dimethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10;KI
2,4-Dimethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10;KI
3,5-Dimethylphenol/4- Ethylphenol	μg/l	< 0,15	DIN 38407-27: 2012-10;KI

Anlage 2/Blatt 7 zum Eignungsnachweis Nr. 5654/23 vom 27.09.2023

Seite 5 von 18 zum Prüfbericht Nr. 23-23281-001/1

Probei Parameter	nbezeichnung Probe-Nr.	5654 23-23281-001	Methode
2,3-Dimethylphenol	Einheit μg/l	n.n.	DIN 38407-27:
3,4-Dimethylphenol	μg/l	n.n.	2012-10;KI DIN 38407-27:
2,4,6-Trimethylphenol	μg/l	n.n.	2012-10;KI DIN 38407-27: 2012-10;KI
2,3,6-Trimethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10:KI
2,3,5-Trimethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10;KI
3,4,5-Trimethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10;KI
2-Ethylphenol	рд/І	n.n.	DIN 38407-27: 2012-10;KI
3-Ethylphenol	µg/I	n.n.	DIN 38407-27: 2012-10;KI
Summe Phenole, ges. (EBV)	µg/I	1,7	DIN 38407-27: 2012-10;KI
Analyse aus dem Perkolat Fr	aktion Nr. 2 (W/F	F 1:1 I/kg)	2012 10/10
pH-Wert		8,0	DIN EN ISO 10523: 2012-04;L
Leitfähigkeit bei 25°C	µS/cm	232	DIN EN 27888: 1993-11;L
Temperatur (pH-Wert)	°C	20	DIN 38404-4: 1976-12;L
Chlorid	mg/l	1,5	DIN EN ISO 10304-1: 2009-07;L
Sulfat	mg/l	36,9	DIN EN ISO 10304-1: 2009-07;L
Vanadium	µg/l	6,4	DIN EN ISO 17294-2: 2017-01;L
Chrom gesamt	µg/l	< 3	DIN EN ISO 17294-2: 2017-01;L
Nickel	µg/l	< 5	DIN EN ISO 17294-2: 2017-01;L
Kupfer	µg/l	18,1	DIN EN ISO 17294-2: 2017-01;L
Arsen	µg/l	2,1	DIN EN ISO 17294-2: 2017-01;L
Cadmium	µg/l	< 0,5	DIN EN ISO 17294-2: 2017-01;L
Antimon	µg/l	2,2	DIN EN ISO 17294-2: 2017-01;L
Thallium	µg/l	< 0,06	DIN EN ISO 17294-2: 2017-01;L
Blei	μg/l	< 5	DIN EN ISO 17294-2: 2017-01;L
Zink	μg/l	< 20	DIN EN ISO 17294-2: 2017-01;L
Molybdän	µg/l	10,3	DIN EN ISO 17294-2: 2017-01;L
Quecksilber	µg/l	< 0,033	DIN EN ISO 17294-2: 2017-01;L
Kohlenstoff org. gelöst (DOC)	mg/l	9,8	DIN EN 1484: 2019-04;L
Kohlenwasserstoffindex	µg/l	< 58	DIN EN ISO 9377-2 (H53): 2001-07;L
KW-Index, mobil	μg/l	< 29	DIN EN ISO 9377-2 (H53): 2001-07;L
KW-Index C22-C40	μg/l	32	DIN EN ISO 9377-2 (H53): 2001-07;L

Anlage 2/Blatt 8 zum Eignungsnachweis Nr. 5654/23 vom 27.09.2023

Seite 6 von 18 zum Prüfbericht Nr. 23-23281-001/1

Parameter	robenbezeichnung Probe-Nr. Einheit	5654 23-23281-001	Methode
PAK		9)	
Naphthalin	μg/l	0,0068	DIN 38407-39: 2011-09;L
1-Methylnaphthalin	μg/l	< 0,004	DIN 38407-39: 2011-09\(\frac{1}{2}\)
2-Methylnaphthalin	μg/l	< 0,004	DIN 38407-39: 2011-09:L
Acenaphthylen	μg/l	< 0,004	DIN 38407-39: 2011-09;L
Acenaphthen	μg/l	< 0,004	DIN 38407-39: 2011-09:L
Fluoren	μg/l	n.n.	DIN 38407-39: 2011-09:1
Phenanthren	μg/l	0,0068	DIN 38407-39: 2011-09;L
Anthracen	μg/l	0,014	DIN 38407-39: 2011-09;L
Fluoranthen	μg/l	0,007	DIN 38407-39: 2011-09;L
Pyren	µg/l	0,0055	DIN 38407-39: 2011-09;L
Benzo[a]anthracen	µд/I	< 0,004	DIN 38407-39: 2011-09;L
Chrysen	µg/l	< 0,004	DIN 38407-39; 2011-09;L
Benzo[b]fluoranthen	µg/l	0,0093	DIN 38407-39: 2011-09,L
Benzo[k]fluoranthen	µg/l	< 0,004	DIN 38407-39: 2011-09;L
Benzo[a]pyren	µg/l	0,005	DIN 38407-39: 2011-09;L
Dibenz[ah]anthracen	µg/I	n.n.	DIN 38407-39: 2011-09;L
Benzo[ghi]perylen	µg/l	0,004	DIN 38407-39: 2011-09;L
Indeno[1,2,3-cd]pyren	µg/l	< 0,004	DIN 38407-39: 2011-09;L
Summe 15 PAK (EBV)	µg/l	0,064	DIN 38407-39: 2011-09;L
Summe Naphthalin +Methylnaphthaline ges.	(EBV)	0,011	DIN 38407-39: 2011-09;L
PCB			
PCB-028	µg/l	n.n.	DIN 38407-37: 2013-11;L
PCB-052	µg/l	n.n.	DIN 38407-37: 2013-11;L
PCB-101	µg/l	n.n.	DIN 38407-37: 2013-11;L
PCB-118	µg/I	n.n.	DIN 38407-37: 2013-11;L
PCB-138	µg/l	n.n.	DIN 38407-37: 2013-11;L
PCB-153	μg/l	n.n.	DIN 38407-37: 2013-11;L
PCB-180	µg/l	n.n.	DIN 38407-37: 2013-11;L
Summe 7 PCB (EBV)	µg/I	0,000	berechnet;L
Phenole/Kresole			I
Phenol	μg/l	1,2	DIN 38407-27: 2012-10;KI
			· · · · · · · · · · · · · · · · · · ·

Anlage 2/Blatt 9 zum Eignungsnachweis Nr. 5654/23 vom 27.09.2023

Seite 7 von 18 zum Prüfbericht Nr. 23-23281-001/1

Pr Parameter	robenbezeichnung Probe-Nr.	5654 23-23281-001	Methode
o-Kresol	Einheit μg/l	n.n.	DIN 38407-27:
			2012-10;KI DIN 38407-27:
m-Kresol	μg/l	n.n.	2012-10;KI
p-Kresol	μg/l	n.n.	DIN 38407-27: 2012-10;KI
2,6-Dimethylphenol	μg/l	n.n.	DIN 38407-27: 2012-10;KI
2,5-Dimethylphenol	μg/l	n.n.	DIN 38407-27: 2012-10;KI
2,4-Dimethylphenol	μg/l	n.n.	DIN 38407-27: 2012-10;Kl
3,5-Dimethylphenol/4- Ethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10;KI
2,3-Dimethylphenol	μg/l	n.n.	DIN 38407-27: 2012-10;KI
3,4-Dimethylphenol	μg/l	n.n.	DIN 38407-27: 2012-10;Kl
2,4,6-Trimethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10;Kl
2,3,6-Trimethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10;KI
2,3,5-Trimethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10;KI
3,4,5-Trimethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10;KI
2-Ethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10;KI
3-Ethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10;KI
Summe Phenole, ges. (EB	V) µg/l	1,2	DIN 38407-27: 2012-10;KI
Analyse aus dem Perkola	at Fraktion Nr. 3 (W/F 2:1 I	/kg)	
pH-Wert		8,1	DIN EN ISO 10523: 2012-04;L
Leitfähigkeit bei 25°C	μS/cm	103	DIN EN 27888: 1993-11;L
Temperatur (pH-Wert)	°C	20	DIN 38404-4: 1976-12;L
Chlorid	mg/l	<1	DIN EN ISO 10304-1: 2009-07;L
Sulfat	mg/l	7,4	DIN EN ISO 10304-1: 2009-07;L
Vanadium	µg/l	< 5	DIN EN ISO 17294-2: 2017-01;L
Chrom gesamt	µg/l	< 3	DIN EN ISO 17294-2: 2017-01:L
Nickel	µg/I	< 5	DIN EN ISO 17294-2: 2017-01;L
Kupfer	µg/I	18,1	DIN EN ISO 17294-2: 2017-01;L
Arsen	µg/l	< 2	DIN EN ISO 17294-2: 2017-01;L
Cadmium	µg/I	< 0,5	DIN EN ISO 17294-2: 2017-01;L
Antimon	µg/l	< 1,5	DIN EN ISO 17294-2: 2017-01;L
Thallium	µg/l	< 0,06	DIN EN ISO 17294-2: 2017-01;L
Blei	µg/l	< 5	DIN EN ISO 17294-2: 2017-01;L

Anlage 2/Blatt 10 zum Eignungsnachweis Nr. 5654/23 vom 27.09.2023

Seite 8 von 18 zum Prüfbericht Nr. 23-23281-001/1

Prob Parameter	penbezeichnung Probe-Nr.	5654 23-23281-001	Methode
- aramotor	Einheit	23-23201-001	
Zink	μg/l	< 20	DIN EN ISO 17294-2: 2017-01:L
Molybdän	μg/l	< 10	DIN EN ISO 17294-2: 2017-01;L
Quecksilber	μg/l	< 0,033	DIN EN ISO 17294-2: 2017-01,1
Kohlenstoff org. gelöst (DOC) mg/l	4,7	DIN EN 1484: 2019-04:L
Kohlenwasserstoffindex	μg/l	190	DIN EN ISO 9377-2 (H53): 2001-07:L
KW-Index, mobil	μg/l	73	DIN EN ISO 9377-2 (H53): 2001-07:L
KW-Index C22-C40	μg/l	110	DIN EN ISO 9377-2 (H53): 2001-07:L
PAK			
Naphthalin	μg/l	< 0,004	DIN 38407-39: 2011-09.L
1-Methylnaphthalin	μg/l	n.n.	DIN 38407-39: 2011-09:L
2-Methylnaphthalin	μg/l	< 0,004	DIN 38407-39: 2011-09:L
Acenaphthylen	μg/l	< 0,004	DIN 38407-39: 2011-09:L
Acenaphthen	μg/l	n.n.	DIN 38407-39: 2011-09:L
Fluoren	μg/l	n.n.	DIN 38407-39: 2011-09:L
Phenanthren	μg/l	< 0,004	DIN 38407-39: 2011-09:L
Anthracen	μg/l	0,013	DIN 38407-39: 2011-09.1
Fluoranthen	µg/l	0,0058	DIN 38407-39: 2011-09.L
Pyren	µg/l	0,0052	DIN 38407-39: 2011-09,L
Benzo[a]anthracen	μg/l	< 0,004	DIN 38407-39: 2011-09.1
Chrysen	µg/l	< 0,004	DIN 38407-39: 2011-09.L
Benzo[b]fluoranthen	µg/l	0,0085	DIN 38407-39: 2011-09,L
Benzo[k]fluoranthen	µg/l	< 0,004	DIN 38407-39: 2011-09;L
Benzo[a]pyren	µg/l	0,0042	DIN 38407-39: 2011-09;L
Dibenz[ah]anthracen	μg/l	n.n.	DIN 38407-39: 2011-09,L
Benzo[ghi]perylen	μg/l	0,0052	DIN 38407-39: 2011-09,L
Indeno[1,2,3-cd]pyren	μg/l	< 0,004	DIN 38407-39: 2011-09;L
Summe 15 PAK (EBV)	μg/l	0,054	DIN 38407-39: 2011-09;L
Summe Naphthalin +Methylnaphthaline ges. (EB	μg/l V)	0,004	DIN 38407-39: 2011-09;L
РСВ			
PCB-028	µg/l	n.n.	DIN 38407-37: 2013-11;L
PCB-052	μg/l	n.n.	DIN 38407-37: 2013-11;L
PCB-101	μg/l	n.n.	DIN 38407-37: 2013-11;L

Anlage 2/Blatt 11 zum Eignungsnachweis Nr. 5654/23 vom 27.09.2023

Seite 9 von 18 zum Prüfbericht Nr. 23-23281-001/1

Pro Parameter	obenbezeichnung Probe-Nr. Einheit	5654 23-23281-001	Methode
PCB-118	µg/l	n.n.	DIN 38407-37: 2013-11;L
PCB-138	µg/l	n.n.	DIN 38407-37: 2013-11:1
PCB-153	µg/l	n.n.	DIN 38407-37: 2013-14:1
PCB-180	µg/l	n.n.	DIN 38407-37: 2013-11;L
Summe 7 PCB (EBV)	μg/l	0,000	berechnet;L
Phenole/Kresole			
Phenol	μg/l	< 0,05	DIN 38407-27: 2012-10;KI
o-Kresol	µg/l	n.n.	DIN 38407-27: 2012-10;KI
m-Kresol	μg/l	n.n.	DIN 38407-27: 2012-10,Kl
p-Kresol	μg/l	n.n.	DIN 38407-27: 2012-10;KI
2,6-Dimethylphenol	μg/l	n.n.	DIN 38407-27: 2012-10;Kl
2,5-Dimethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10;Kl
2,4-Dimethylphenol	μg/l	n.n.	DIN 38407-27: 2012-10;K1
3,5-Dimethylphenol/4- Ethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10;KI
2,3-Dimethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10;KI
3,4-Dimethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10,KI
2,4,6-Trimethylphenol	µg/I	n.n.	DIN 38407-27: 2012-10;KI
2,3,6-Trimethylphenol	µg/I	n.n.	DIN 38407-27: 2012-10;KI
2,3,5-Trimethylphenol	μg/l	n.n.	DIN 38407-27: 2012-10;KI
3,4,5-Trimethylphenol	µg/I	n.n.	DIN 38407-27: 2012-10;KI
2-Ethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10;KI
3-Ethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10;KI
Summe Phenole, ges. (EB)	V) μg/l	0,025	DIN 38407-27: 2012-10;KI
Analyse aus dem Perkola	t Fraktion Nr. 4 (W/F 4	:1 l/kg)	
pH-Wert		8,0	DIN EN ISO 10523: 2012-04;L
Leitfähigkeit bei 25°C	μS/cm	91	DIN EN 27888: 1993-11;L
Temperatur (pH-Wert)	°C	20	DIN 38404-4: 1976-12-L
Chlorid	mg/l	<1	DIN EN ISO 10304-1: 2009-07;L
Sulfat	mg/l	< 5	DIN EN ISO 10304-1: 2009-07;L
Vanadium	µg/l	6,7	DIN EN ISO 17294-2: 2017-01;L
Chrom gesamt	µg/l	< 3	DIN EN ISO 17294-2: 2017-01;L
Nickel	µg/l	< 5	DIN EN ISO 17294-2: 2017-01;L

Anlage 2/Blatt 12 zum Eignungsnachweis Nr. 5654/23 vom 27.09.2023

Seite 10 von 18 zum Prüfbericht Nr. 23-23281-001/1

Probenbe Parameter	zeichnung Probe-Nr.	5654 23-23281-001	Methode
	Einheit		
Kupfer	μg/l	11,8	DIN EN ISO 17294-2: 2017-01;L
Arsen	μg/l	3,0	DIN EN ISO 17294-2: 2017-01;L
Cadmium	μg/l	< 0,5	DIN EN ISO 17294-2: 2017-01;1
Antimon	μg/l	< 1,5	DIN EN ISO 17294-2: 2017-01:L
Thallium	μg/l	< 0,06	DIN EN ISO 17294-2: 2017-01:L
Blei	μg/l	< 5	DIN EN ISO 17294-2: 2017-01;L
Zink	μg/l	< 20	DIN EN ISO 17294-2: 2017-01:L
Molybdän	μg/l	< 10	DIN EN ISO 17294-2: 2017-01,t
Quecksilber	μg/l	< 0,033	DIN EN ISO 17294-2: 2017-01:L
Kohlenstoff org. gelöst (DOC)	mg/l	4,5	DIN EN 1484: 2019-04;L
Kohlenwasserstoffindex	μg/l	110	DIN EN ISO 9377-2 (H53): 2001-07:L
KW-Index, mobil	µg/l	54	DIN EN ISO 9377-2 (H53): 2001-07:1
KW-Index C22-C40	µg/l	59	DIN EN ISO 9377-2 (H53): 2001-07:L
PAK			
Naphthalin	µg/l	0,0057	DIN 38407-39: 2011-09:L
1-Methylnaphthalin	µg/l	< 0,004	DIN 38407-39: 2011-09:L
2-Methylnaphthalin	µg/l	< 0,004	DIN 38407-39: 2011-09:L
Acenaphthylen	μg/l	< 0,004	DIN 38407-39: 2011-09:L
Acenaphthen	µg/l	n.n.	DIN 38407-39: 2011-09:L
Fluoren	µg/l	n.n.	DIN 38407-39: 2011-09.L
Phenanthren	µg/l	< 0,004	DIN 38407-39: 2011-09:L
Anthracen	µg/l	0,011	DIN 38407-39: 2011-09:L
Fluoranthen	µg/l	0,0069	DIN 38407-39: 2011-09:L
Pyren	µg/l	0,0063	DIN 38407-39: 2011-09;L
Benzo[a]anthracen	μg/l	< 0,004	DIN 38407-39: 2011-09.L
Chrysen	μд/Ι	< 0,004	DIN 38407-39: 2011-09.L
Benzo[b]fluoranthen	µg/l	0,0084	DIN 38407-39: 2011-09:L
Benzo[k]fluoranthen	µg/l	< 0,004	DIN 38407-39: 2011-09:L
Benzo[a]pyren	µg/I	0,0044	DIN 38407-39: 2011-09:L
Dibenz[ah]anthracen	µg/I	n.n.	DIN 38407-39: 2011-09;L
Benzo[ghi]perylen	µg/l	0,0054	DIN 38407-39: 2011-09:L
Indeno[1,2,3-cd]pyren	μg/l	< 0,004	DIN 38407-39: 2011-09;L

Anlage 2/Blatt 13 zum Eignungsnachweis Nr. 5654/23 vom 27.09.2023

Seite 11 von 18 zum Prüfbericht Nr. 23-23281-001/1

P Parameter	robenbezeichnung Probe-Nr.	5654 23-23281-001	Methode
	Einheit		
Summe 15 PAK (EBV)	μg/l	0,054	DIN 38407-39: 2011-09;L
Summe Naphthalin +Methylnaphthaline ges.	μg/l (EBV)	0,010	DIN 38407-39: 2011-09;L
РСВ			
PCB-028	μg/l	n.n.	DIN 38407-37: 2013-11;L
PCB-052	µg/l	n.n.	DIN 38407-37: 2013-11;L
PCB-101	μg/l	n.n.	DIN 38407-37: 2013-11;L
PCB-118	μg/l	n.n.	DIN 38407-37: 2013-11;L
PCB-138	µg/l	n.n.	DIN 38407-37: 2013-11;L
PCB-153	μg/l	n,n.	DIN 38407-37: 2013-11:L
PCB-180	μg/l	n.n.	DIN 38407-37: 2013-11;L
Summe 7 PCB (EBV)	μg/l	0,000	berechnet;L
Phenole/Kresole			
Phenol	μg/l	< 0,05	DIN 38407-27: 2012-10;KI
o-Kresol	µg/l	n.n.	DIN 38407-27: 2012-10;Kl
m-Kresol	µg/l	n.n.	DIN 38407-27: 2012-10;Kl
p-Kresol	µg/l	n.n.	DIN 38407-27: 2012-10;Kl
2,6-Dimethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10;KI
2,5-Dimethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10;KI
2,4-Dimethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10;KI
3,5-Dimethylphenol/4- Ethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10;KI
3,4-Dimethylphenol	hg/l	n.n.	DIN 38407-27: 2012-10;Kl
2,4,6-Trimethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10;KI
2,3,6-Trimethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10;KI
2,3,5-Trimethylphenol	μg/l	n.n.	DIN 38407-27: 2012-10;Kl
3,4,5-Trimethylphenol	μg/l	n.n.	DIN 38407-27: 2012-10;Kl
2-Ethylphenol	µg/I	n.n.	DIN 38407-27: 2012-10;KI
3-Ethylphenol	µg/l	n.n.	DIN 38407-27: 2012-10;KI
Summe Phenole, ges. (El	BV) µg/l	0,025	DIN 38407-27: 2012-10;KI
kumulative Berechnung C(o)+C(u) aus Analysenwerten der C1-3 Perkolaten für Materialwertvergleich nach EBV §9(2)			
Chlorid C1-3 kum. W/F=2	:1, u mg/l	5,0	berechnet;L
Chlorid C1-3 kum. W/F=2	:1, o mg/l	5,5	berechnet;L
Sulfat C1-3 kum. W/F=2:1	, u mg/l	65,8	berechnet;L
Sulfat C1-3 kum. W/F=2:1	, o mg/l	65,8	berechnet;L

Anlage 2/Blatt 14 zum Eignungsnachweis Nr. 5654/23 vom 27.09.2023

Seite 12 von 18 zum Prüfbericht Nr. 23-23281-001/1

Selle 12 von 16 zum 1 tulbenom W.			20230013-23133003
Probenbez	9	5654	Matheda
Parameter	Probe-Nr.	23-23281-001	Methode
	Einheit		
Vanadium C1-3 kum. W/F=2:1, u	μg/l	3,1	berechnet;L
Vanadium C1-3 kum. W/F=2:1, o	μg/l	5,6	berechnet;L
Chrom C1-3 kum. W/F=2:1, u	μg/l	0	berechnet;L
Chrom C1-3 kum. W/F=2:1, o	µg/l	3,0	berechnet;L
Nickel C1-3 kum. W/F=2:1, u	µg/l	0	berechnet;L
Nickel C1-3 kum. W/F=2:1, o	µg/l	5,0	berechnet;L
Kupfer C1-3 kum. W/F=2:1, u	µg/l	19,2	berechnet;L
Kupfer C1-3 kum. W/F=2:1, o	µg/l	19,2	berechnet;L
Arsen C1-3 kum. W/F=2:1, u	µg/l	1,0	berechnet;L
Arsen C1-3 kum. W/F=2:1, o	µg/l	2,0	berechnet;L
Cadmium C1-3 kum. W/F=2:1,	μg/l	0,13	berechnet;L
Cadmium C1-3 kum. W/F=2:1,	µg/l	0,55	berechnet;L
Antimon C1-3 kum. W/F=2:1, u	μg/l	1,1	berechnet;L
Antimon C1-3 kum. W/F=2:1, o	µg/l	1,8	berechnet;L
Thallium C1-3 kum. W/F=2:1, u	µg/l	0	berechnet;L
Thallium C1-3 kum. W/F=2:1, o	µg/l	0,06	berechnet;L
Blei C1-3 kum. W/F=2:1, u	µg/l	0,77	berechnet;L
Blei C1-3 kum. W/F=2:1, o	μg/l	5,0	berechnet;L
Zink C1-3 kum. W/F=2:1, u	µg/l	4,2	berechnet;L
Zink C1-3 kum. W/F=2:1, o	µg/l	21,2	berechnet;L
Molybdän C1-3 kum. W/F=2:1, u	µg/l	6,3	berechnet;L
Molybdän C1-3 kum. W/F=2:1,	µg/l	11,3	berechnet;L
Quecksilber C1-3 kum. W/ F=2:1, u	µg/l	0,00	berechnet;L
Quecksilber C1-3 kum. W/ F=2:1, o	μg/l	0,03	berechnet;L
DOC C1-3 kum. W/F=2:1, u	mg/l	8,3	berechnet;L
DOC C1-3 kum. W/F=2:1, o	mg/l	8,3	berechnet;L
Kohlenwasserstoffindex C1-3 kum. W/F=2:1, u	μg/l	120	berechnet;L
Kohlenwasserstoffindex C1-3 kum. W/F=2;1, o	μg/l	140	berechnet;L
PAK			
Naphthalin C1-3 kum. W/ F=2:1, u	μg/l	0,004	berechnet;L
Naphthalin C1-3 kum. W/ F=2:1, o	μg/l	0,004	berechnet;L
Acenaphthylen C1-3 kum. W/F=2:1, u	μg/l	0,005	berechnet;L
Acenaphthylen C1-3 kum. W/F=2:1, o	μg/l	0,005	berechnet;L

Anlage 2/Blatt 15 zum Eignungsnachweis Nr. 5654/23 vom 27.09.2023

Seite 13 von 18 zum Prüfbericht Nr. 23-23281-001/1

Seite 13 von 18 zum Prufbericht i	Nr. 23-23281-001/1		20230613-25159885
Probenb	ezeichnung	5654	
Parameter	Probe-Nr.	23-23281-001	Methode
	Einheit		
Acenaphthen C1-3 kum. W/ F=2:1, u	µg/I	0,002	berechnet;L
Acenaphthen C1-3 kum. W/F=2:1, o	µg/I	0,002	berechnet;L
Fluoren C1-3 kum. W/F=2:1, u	μg/l	0,0006	berechnet;L
Fluoren C1-3 kum. W/F=2:1, o	μg/l	0,0008	berechnet;L
Phenanthren C1-3 kum. W/F=2:1, u	µg/l	0,004	berechnet/L
Phenanthren C1-3 kum. W/F=2:1, o	μg/l	0,004	berechnet;1
Anthracen C1-3 kum. W/F=2:1, u	μg/l	0,01	berechnet;L
Anthracen C1-3 kum. W/F=2:1, o	μg/l	0,01	berechnet;L
Fluoranthen C1-3 kum. W/ F=2:1, u	μg/l	0,01	berechnet;L
Fluoranthen C1-3 kum. W/ F=2:1, o	μg/l	0,01	berechnet;L
Pyren C1-3 kum. W/F=2:1, u	µg/l	0,01	berechnet;L
Pyren C1-3 kum. W/F=2:1, o	µg/l	0,01	berechnet;L
Benzo[a]anthracen C1-3 kum. W/F=2:1, u	µg/l	0,006	berechnet;L
Benzo[a]anthracen C1-3 kum. W/F=2:1, o	µg/l	0,006	berechnet;L
Chrysen C1-3 kum. W/F=2:1, u	µg/l	0, <mark>00</mark> 6	berechnet;L
Chrysen C1-3 kum. W/F=2:1, o	µg/I	0,006	berechnet;L
Benzo[b]fluoranthen C1-3 kum. W/F=2:1, u	μg/l	0,02	berechnet;L
Benzo[b]fluoranthen C1-3 kum. W/F=2:1, o	μg/l	0,02	berechnet;L
Benzo[k]fluoranthen C1-3 kum. W/F=2:1, u	μg/l	0,005	berechnet;L
Benzo[k]fluoranthen C1-3 kum. VWF=2:1, o	μg/l	0,005	berechnet;L
Benzo[a]pyren C1-3 kum. W/ F=2:1, u	μg/l	0,01	berechnet;L
Benzo[a]pyren C1-3 kum. W/ F=2:1, o	μg/l	0,01	berechnet;L
Dibenz[ah]anthracen C1-3 kum. W/F=2:1, u	μg/l	0,001	berechnet;L
Dibenz[ah]anthracen C1-3 kum. W/F=2:1, o	μg/l	0,001	berechnet;L
Benzo[ghi]perylen C1-3 kum. W/F=2:1, u	μg/l	0,01	berechnet;L
Benzo[ghi]perylen C1-3 kum. W/F=2:1, o	μg/l	0,01	berechnet;L
Indeno[1,2,3-cd]pyren C1-3 kum. W/F=2:1, u	μg/l	0,009	berechnet;L
Indeno[1,2,3-cd]pyren C1-3 kum. W/F=2:1, o	μg/l	0,009	berechnet;L

Anlage 2/Blatt 16 zum Eignungsnachweis Nr. 5654/23 vom 27.09.2023

Seite 14 von 18 zum Prüfbericht Nr. 23-23281-001/1

Probenbezei Parameter	۰	5654	Methode
rarameter	Probe-Nr. Einheit	23-23281-001	Wethod
1-Methylnaphthalin C1-3 kum. W/F=2:1, u	µg/l	0,002	berechnet;L
1-Methylnaphthalin C1-3 kum. W/F=2:1, o	μg/l	0,002	berechnet;L
2-Methylnaphthalin C1-3 kum. W/F=2:1, u	μg/l	0,003	berechnet;L
2-Methylnaphthalin C1-3 kum. W/F=2:1, o	μg/l	0,003	berechnet;L
Summe 15 PAK (EBV) C1-3 kum. W/F=2:1, u	μg/l	0,118	berechnet;L
Summe 15 PAK (EBV) C1-3 kum. W/F=2:1, o	μg/l	0,118	berechnet;L
Summe Naphthalin +Methylnaphthaline ges. (EBV) C1-3 kum. W/F=2:1, u	µg/l	0,008	berechnet;l.
Summe Naphthalin +Methylnaphthaline ges. (EBV) C1-3 kum. W/F=2:1, o	µg/l	0,008	berechnet;L
РСВ			
PCB 28 C1-3 kum. W/F=2:1, u	μg/I	0	berechnet;L
PCB 28 C1-3 kum. W/F=2:1, o	μg/l	0,003	berechnet;L
PCB 52 C1-3 kum. W/F=2:1, u	μg/l	0	berechnet;L
PCB 52 C1-3 kum. W/F=2:1, o	μg/l	0,003	berechnet;L
PCB 101 C1-3 kum. W/F=2:1, u	μg/l	0	berechnet;L
PCB 101 C1-3 kum. W/F=2:1, o	μg/l	0,003	berechnet;L
PCB 118 C1-3 kum. W/F=2:1, u	µg/l	0	berechnet;L
PCB 118 C1-3 kum. W/F=2:1, o	μg/l	0,003	berechnet;L
PCB 138 C1-3 kum. W/F=2:1, u	μg/l	0	berechnet;L
PCB 138 C1-3 kum. W/F=2:1, o	µg/l	0,003	berechnet;L
PCB 153 C1-3 kum. W/F=2:1, u	µg/l	0	berechnet;L
PCB 153 C1-3 kum. W/F=2:1, o	μg/l	0,003	berechnet;L
PCB 180 C1-3 kum. W/F=2:1, u	µg/l	0	berechnet;L
PCB 180 C1-3 kum. W/F=2:1, o	µg/l	0,003	berechnet;L
Summe 7 PCB (EBV) C1-3 kum. W/F=2:1, u	µg/l	0,000	berechnet;L
Summe 7 PCB (EBV) C1-3 kum. W/F=2:1, o	μg/l	0,021	berechnet;L
Phenole/Kresole			
Phenol C1-3 kum. W/F=2:1, u	µg/l	0,63	berechnet;L
Phenol C1-3 kum, W/F=2:1, o	µg/l	0,66	berechnet;L
o-Kresol C1-3 kum. W/F=2:1, u	μg/l	0,00	berechnet;L
o-Kresol C1-3 kum. W/F=2:1, o	μg/l	0,07	berechnet;L
m-Kresol C1-3 kum. W/F=2:1, u	μg/l	0,00	berechnet;L
m-Kresol C1-3 kum. W/F=2:1, o	μg/l	0,07	berechnet;L
p-Kresol C1-3 kum. W/F=2:1, u	μg/l	0,00	berechnet;L
p-Kresol C1-3 kum. W/F=2:1, o	μg/l	0,07	berechnet;L

Anlage 2/Blatt 17 zum Eignungsnachweis Nr. 5654/23 vom 27.09.2023

Seite 15 von 18 zum Prüfbericht Nr. 23-23281-001/1

Seite 15 von 18 zum Prüfberich	nt Nr. 23-23281-001/1		20230613-25159885
Prober Parameter	nbezeichnung Probe-Nr.	5654 23-23281-001	Methode
	Einheit		
2,6-Dimethylphenol C1-3 kum. W/F=2:1, u	μg/l	0,00	berechnet;L
2,6-Dimethylphenol C1-3 kum. W/F=2:1, o	μg/l	0,07	berechnet;L
2,5-Dimethylphenol C1-3 kum. W/F=2:1, u	μg/l	0,00	berechnet;L
2,5-Dimethylphenol C1-3 kum. W/F=2:1, o	μg/l	0,07	berechnet;L
2,4-Dimethylphenol C1-3 kum. W/F=2:1, u	µg/l	0,00	berechnet;L
2,4-Dimethylphenol C1-3 kum. W/F=2:1, o	µg/l	2,29	berechnet;L
3,5-Dimethylphenol/4- Ethylphenol C1-3 kum. W/ F=2:1, u	µg/I	0,00	berechnet;L
3,5-Dimethylphenol/4- Ethylphenol C1-3 kum. W/ F=2:1, o	µg/I	0,07	berechnet;L
2,3-Dimethylphenol C1-3 kum. W/F=2:1, u	μg/l	0,00	berechnet;L
2,3-Dimethylphenol C1-3 kum. W/F=2:1, o	μg/l	0,07	berechnet;L
2,3-Dimethylphenol C1-3 kum. W/F=2:1, u	µg/l	0,00	berechnet;L
2,3-Dimethylphenol C1-3 kum. W/F=2:1, o	µg/l	0,07	berechnet;L
2,4,6-Trimethylphenol C1-3 kum. W/F=2:1, u	µg/l	0,00	berechnet;L
2,4,6-Trimethylphenol C1-3 kum. W/F=2:1, o	hã/l	0,07	berechnet;L
2,3,6-Trimethylphenol C1-3 kum. W/F=2:1, u	hã/l	0,00	berechnet;L
2,3,6-Trimethylphenol C1-3 kum. W/F=2:1, o	µg/l	0,07	berechnet;L
2,3,5-Trimethylphenol C1-3 kum. W/F=2:1, u	µg/l	0,00	berechnet;L
2,3,5-Trimethylphenol C1-3 kum. W/F=2:1, o	µg/l	0,07	berechnet;L
3,4,5-Trimethylphenol C1-3 kum. W/F=2:1, u	µg/l	0,00	berechnet;L
3,4,5-Trimethylphenol C1-3 kum. W/F=2:1, o	µg/l	0,07	berechnet;L
2-Ethylphenol C1-3 kum. W/ F=2:1, u	µg/l	0,00	berechnet;L
2-Ethylphenol C1-3 kum. W/ F=2:1, o	µg/l	0,07	berechnet;L
3-Ethylphenol C1-3 kum. W/ F=2:1, u	µg/l	0,00	berechnet;L
3-Ethylphenol C1-3 kum. W/ F=2:1, o	μg/l	0,07	berechnet;L
Phenole (EBV) C1-3 kum. W/ F=2:1, u	µg/l	0,63	berechnet;L

Anlage 2/Blatt 18 zum Eignungsnachweis Nr. 5654/23 vom 27.09.2023

Seite 16 von 18 zum Prüfbericht Nr. 23-23281-001/1

Probenbezeichnun Parameter Probe-N Einhe	r. 23-23281-001	Methode
Phenole (EBV) C1-3 kum. W/ µg F=2:1, o		berechnet;L
Dokumentation des ausführlichen Säulen	eluats nach DIN 19528	
Feuchtegehalt Probenmaterial	6 10,0	DIN 19528: 2009-01:1
Säulendimension	Glas, 8 cm x 80 cm	DIN 19528: 2009-01;L
verwendetes Elutionsmittel	entmineralisi <mark>ert</mark> es Wasser	DIN 19528; 2009-01;1
Füllhöhe der Probe in der Säule cr	72	DIN 19528: 2009-01;L
Einwaage Probe Trockenmasse	5299	DIN 19528: 2009-01;L
Eingesetzte Sandzumischung	0	DIN 19528; 2009-01:L
Art des Materials	Nichtbindige Mineralböden	DIN 19528: 2009-01;L
Einbauverfahren	mit Probe befüllt und verdichtet, oben und unten je eine dünne Schicht Quarzwolle	DIN 19528: 2009-01;L
Dauer der Sättigung	2	DIN 19528: 2009-01;L
Durchfluss Sättigungsphase ml/mi (Soll)	13,4	DIN 19528: 2009-01;L
Durchfluss Perkolationsphase ml/mi (Soll)	5,4	DIN 19528: 2009-01;L
Beginn der Perkolation Fraktion 1 (Datum/Uhrzeit)	11.05.2 <mark>023</mark> 13:45	DIN 19528: 2009-01;L
Ende der Perkolation Fraktion 1 (Datum/Uhrzeit)	11.05.2 <mark>023</mark> 18:38	DIN 19528: 2009-01;L
Volumen der Eluatfraktion 1	1495	DIN 19528: 2009-01;L
Perkolationsdauer Fraktion 1 mi	293	DIN 19528: 2009-01;L
Durchfluss Perkolationsphase ml/mi Fraktion 1 (IST)	5,1	DIN 19528: 2009-01;L
W/F-Verhältnis Fraktion 1 (IST) bez. auf Trockenmasse Probenmaterial	0,3	DIN 19528: 2009-01;L
Beginn der Perkolation Fraktion 2 (Datum/Uhrzeit)	11.05.2023 18:38	DIN 19528: 2009-01;L
Ende der Perkolation Fraktion 2 (Datum/Uhrzeit)	12.05.2023 06:01	DIN 19528: 2009-01;L
Volumen der Eluatfraktion 2	3632	DIN 19528: 2009-01;L
Perkolationsdauer Fraktion 2 mi	976	DIN 19528: 2009-01;L
Durchfluss Perkolationsphase ml/mi Fraktion 2 (IST)	5,3	DIN 19528: 2009-01;L
W/F-Verhältnis Fraktion 2 (IST) l/k bez. auf Trockenmasse Probenmaterial	1,0	DIN 19528: 2009-01;L
Beginn der Perkolation Fraktion 3 (Datum/Uhrzeit)	12,05,2023 06:01	DIN 19528: 2009-01;L
Ende der Perkolation Fraktion 3 (Datum/Uhrzeit)	12.05.2023 22:16	DIN 19528: 2009-01;L

Anlage 2/Blatt 19 zum Eignungsnachweis Nr. 5654/23 vom 27.09.2023

Seite 17 von 18 zum Prüfbericht Nr. 23-23281-001/1

20230613-25159885

Probenbeze Parameter	eichnung Probe-Nr.	5654 23-23281-001	Methode
	Einheit		
Volumen der Eluatfraktion 3	ml	3423	DIN 19528: 2009-01;L
Perkolationsdauer Fraktion 3	min	1951	DIN 19528: 2009-01;L
Durchfluss Perkolationsphase Fraktion 3 (IST)	ml/min	4,4	DIN 19528: 2009-01;L
W/F-Verhältnis Fraktion 3 (IST) bez. auf Trockenmasse Probenmaterial	l/kg	1,6	DIN 19528: 2009-01;L
Beginn der Perkolation Fraktion 4 (Datum/Uhrzeit)	4	12,05,2023 22:16	DIN 19528; 2009-01;L
Ende der Perkolation Fraktion 4 (Datum/Uhrzeit)		14.0 <mark>5.2023</mark> 06:47	DIN 19528: 2009-01;L
Volumen der Eluatfraktion 4	ml	10382	DIN 19528: 2009-01;L
Perkolationsdauer Fraktion 4	min	3902	DIN 19528: 2009-01;L
Durchfluss Perkolationsphase Fraktion 4 (IST)	ml/min	4,9	DIN 19528: 2009-01;L
W/F-Verhältnis Fraktion 4 (IST) bez. auf Trockenmasse Probenmaterial	l/kg	3,6	DIN 19528: 2009-01;L
Stabilisierung der Eluate für die Analyse		HNO3 für Metalle	DIN 19528: 2009-01;L
Hinweise zur Probenvorbereitung			
Säureaufschluss		•	DIN EN 13657: 2003-01;L

n.b. = nicht bestimmbar n.a. = nicht analysiert n.n. = nicht nachgewiesen ° = nicht akkreditiert FV = Fremdvergabe UA=Unterauftragvergabe AG=Auftraggeberdaten

Standorlkennung (Der Norm nachgestellte Buchstabenkombination): H=Hannover, KI=Kiel, L=Lünen, HE=Heide, BS=Braunschweig

- 1) Z 0* = maximale Feststoffgehalte für die Verfüllung von Abgrabungen unter Einhaltung bestimmter Randbedingungen ("Ausnahmen von der Regel")
 Für die Verfüllung von Abgrabungen unterhalb der durchwurzelbaren Bodenschicht darf Z 0 überschritten werden, wenn
 die Zuordnungswerte z 0 im Eluat eingehalten werden
 eine Deckschicht aus Bodenmaterial von mindestens 2 m Mächtigkeit aufgebracht wird und die Deckschicht die Vorsorgewerte der BBodSchV einhält
 die Verfüllungen außerhalb bestimmter (Schutz-)Gebiete (Trinkwasser-, Heilquellenschutzgebiete, Wasservorranggebiete, Karstgebiete und Gebiete mit stark klüftigem,
 besonders wasserwegsamem Untergrund
 2 Zo*. Der Wert 15 mg/kg gilt für Bodenmaterial der Bodenarten Sand und Lehm/Schluff. Für Bodenmaterial der Bodenart Ton gilt der Wert 20 mg/kg
 3 Zo*. Der Wert 1 mg/kg gilt für Bodenmaterial der Bodenarten Sand und Lehm/Schluff. Für Bodenmaterial der Bodenart Ton gilt der Wert 1,5 mg/kg
 4 Zo*. Der Wert 0,7 mg/kg gilt für Bodenmaterial der Bodenarten Sand und Lehm/Schluff. Für Bodenmaterial der Bodenart Ton gilt der Wert 1,0 mg/kg
 5 Zo* und Zo*. Bei einem C:N Verhältnis > 25 beträgt der Zuordnungswert 1 Masse-% C:N-Verhältnis der Probe:
 5 Zo* und Z1: Bei Überschreitung ist die Ursache zu prüfen
 7 Die angegebenen Zuordnungswerte gelten für Kohlenwasserstoffverbindungen mit einer Kettenlänge von C10 C22. Der Gesamtgehalt, bestimmt nach E DIN EN 14039
 6 (C10 C40), darf den darunter genannten Wert nicht überschreiten
 8 Bodenmaterial mit Zuordnungswerten > 3 mg/kg und <= 9 mg/kg darf nur in Gebieten mit hydrogeologisch günstigen Deckschichten eingebaut werden
 9 Z2-Wert bei natürlichen Böden in Ausnahmefällen bis 300 mg/l
 10) Z2-Wert bei natürlichen Böden in Ausnahmefällen bis 120 µg/l

Probenkommentare

Der Säureaufschluss erfolgte mit dem digi-prep-System.

DIN 19682-2:2014-07

* Für die Bodenart "nicht spezifisch" gelten entsprechend der LAGA im Feststoff die Zuordnungswerte Z0 Tab.II 1.2.-2 für Lehm/Schluff sowie im Eluat die Zuordnungswerte Z0 Tab.II 1.2.-3.

Anlage 2/Blatt 20 zum Eignungsnachweis Nr. 5654/23 vom 27.09.2023

20230613-25159885 Seite 18 von 18 zum Prüfbericht Nr. 23-23281-001/1 Der Prüfbericht wurde elektronisch erstellt und ist ohne Unterschrift rechtsgültig. i.A. Dipl.-Geol. Sebastian Münn (Projektleiter) 13.06.2023 Anhänge 23-23281-001 MW